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Section1. Review of some standard material
A Lie group is a smooth manifold endowed with a group
structure such that multiplication and inversion are smooth
maps.
A complex Lie group is a complex manifold endowed with a
group structure such that multiplication and inversion are
holomorphic maps.
If G is a Lie group the tangent space g at the identity has the
structure of a Lie algebra, with a skew symmetric bilinear map

[ , ] : g× g → g

satisfying the Jacobi identity
[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Some equivalent definitions of the bracket.
1 For any representation ρ of G on a vector space V we get

a map dρ : g → EndV . Apply this to the adjoint
representation of G on g, induced by the action of G on
itself by conjugation: dρ(ξ)(η) = [ξ, η].

2 Identify g with the left-invariant vector fields on G. The
bracket on g is induced by the Lie bracket on vector fields.

3 Choose any local coordinate system to identify a
neighbourhood of 1G in G with a neighbourhood of 0 in g.
Then

ξ1ξ1 = ξ1 + ξ2 + A(ξ1, xi2) + higher order terms,

and [ξ1, ξ2] is the skew-symmetric part of A.
The bracket on End V is [M1,M2] = M1M2 − M2M1. The Jacobi
identity can be read as the statement that dρ in (1) is a Lie
algebra homomorphism.
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For any ξ in g there is a unique 1-parameter subgroup
t 7→ exp(tξ) with derivative ξ at t = 0. The exponential map
exp : g → G gives a diffeomorphism from a neighbourhood of0
to a neighbourhood of 1G.
If G is a compact Lie group then any representation of G, real
or complex, admits an invariant Euclidean/Hermitian structure.
In particular this is true for the adjoint representation. An
invariant Euclidean structure on g defines a bi-invariant
Riemannian metric on G, preserved by left and right translation.
The 1-parameter subgroups are then the geodesics through
1G. Hence, or otherwise, one sees that the exponential map of
a compact Lie group is surjective.
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Example: the compact Lie group SU(2). This consists of
complex matrices

M =

(
α β

−β α

)
,

with detM = |α|2 + |β|2 = 1. As a manifold it can be identified
with the sphere S3. The 1-parameter subgroups are great
circles, intersecting in antipodal points ±1.
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Let G be any Lie group and ρ a representation on a vector
space V . The formula

Bρ(ξ1, ξ2) = Tr ρ(ξ1)ρ(ξ2),

defines an invariant symmetric form on g. In the case of the
adjoint representation this is called the Killing form. If the
representation is orthogonal, the form is negative and if also
the representation is faithful it is negative definite.
Relevant parts of the above extends to complex Lie groups in a
straightforward way. A representation of a complex Lie group is
a holomorphic map from G to GL(V ) (Note that the only
compact complex Lie groups are tori. )
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Section 2: Compact real forms
A Lie algebra is called simple if it has no proper ideals (and is
not one-dimensional).
Theorem 1
Let g be a simple complex Lie algebra. There is a complex Lie
group G with Lie algebra g and a compact real subgroup K
such that g is the complexification of k: i.e. g = k+ ik.

(Remark: A complex Lie group which is the complexification of
a compact Lie group is called reductive.)
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Examples

G = SL(n,C),K = SU(n)
G = SO(n,C),K = SO(n), n ̸= 2,4.
G = Sp(n,C),K = Sp(n).

In the third item, Sp(n,C) ⊂ SL(2n,C) is the subset preserving
a non-degenerate skew symmetric form. The compact form
Sp(n) is the set of quaternionic n × n matrices M with
MM∗ = 1. The two are connected bhy regarding Hn as C2n with
skew form ⟨x , Jy⟩.
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We outline a (non-standard) geometric proof of Theorem 1 ,
which fits it into a more general framework of “Geometric
Invariant Theory and the Kempf-Ness Theorem”.
Let V be a complex vector space. A Lie algebra structure on V
is a tensor in Λ2V ∗ ⊗ V . We regard this as a representation of
the group SL(V ). More generally, consider any representation ρ
of SL(V ) on a complex vector space W . We can assume that
there is a Hermitian metric on W preserved by the action of
SU(V ) ⊂ SL(V ). Let w0 ∈ W and consider its SL(V )-orbit
O ⊂ W . Suppose that there is a point w ∈ O which minimises
the norm, among all points in O. Let G′ be the stabiliser of w in
SL(V ) and K ′ = G′ ∩ SU(V ).
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Lemma The Lie algebra of G′ is the complexification of the Lie
algebra of K ′.
The Lie algebra homomorphism dρ : sl(V ) → sl(W ) takes
su(V ) to su(W ). This implies that ρ(ξ∗) = ρ(ξ)∗ where the
adjoint ∗ has the usual meaning with respect to the metrics on
V ,W .
The hypothesis that w minimises the norm implies that
Re⟨dρ(ξ)(w),w⟩ = 0 for all ξ ∈ sl(V ). Take ξ = [η, η∗] for some
η ∈ sl(V ) and set M = dρ(η). Then dρ([η, η∗]) = [M,M∗] and

⟨[M,M∗]w ,w⟩ = |M∗w |2 − |Mw |2.

By definition, η lies in Lie(G′) if and only if dρ(η) = 0. So we
see that ∗ preserves Lie(G′) and, since (∗)2 = 1, Lie(G′) is the
sum of the ±1 eigenspaces of ∗ which are LieK ′ and i LieK ′.
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Apply this to our situation where w0 is the bracket defining a
simplex complex Lie algebra. Suppose we can find a
minimising point as above. This defines an equivalent Lie
algebra structure so without loss of generality w = w0. We want
to see that g = Lie(G′). By definition, Lie(G′) is the Lie algebra
of derivations, i.e linear maps α : g → g such that

α([ξ1, ξ2] = [α(ξ1), ξ2] + [ξ1, α(ξ2)].

The adjoint representation defines a homomorphism ξ 7→ adξ
from g to Lie(G′) and this is injective since g is simple. The
identity

[α, adξ] = adα(ξ) (∗)

shows that the image is an ideal in Lie(G′).
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Let g⊥ be the orthogonal complement of g in Lie(G′) with
respect to the Hermitian inner product. We claim that is also an
ideal in Lie(G′). For if α ∈ Lie(G′), β ∈ g⊥, γ ∈ g we have

⟨[α, β], γ⟩ = Tr([α, β]∗γ) = −Tr([α∗, β∗]γ) = −Tr(α∗β∗γ−β∗α∗γ.

Using the property of trace this is

−Tr(γα∗β∗ − α∗γβ∗) = −⟨[γ, α∗], β⟩.

But we know that α∗ ∈ Lie(G′) and g ⊂ Lie(G′) is an ideal, so
[γ, α∗] ∈ g and is orthogonal to β.
Now we have a direct sum of two ideals Lie(G′) = g⊕ g⊥ so
[g, g⊥] = 0. The identity (*) shows that for β ∈ g⊥ adβ(ξ) = 0 for
all ξ ∈ g, hence β = 0 and g = Lie(G′).
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Theorem 1 follows from a general result.
Theorem 2Let W be a representation of SL(V ) and w0 a
non-zero point in W. If there is no norm-minimising point in O
then the stabiliser of w0 in SL(V ) preserves a proper subspace
of V .
In our case, the stabiliser of w0 contains a copy of g and if this
preserves a subspace of g that subspace is an ideal. So
Theorem 2 implies Theorem 1.
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Our proof of Theorem 2 involves considerations of the
homogeneous space H = SL(V )/SU(V ) = SL(n,C)/SU(n)
which can be identified with the space of positive definite
self-adjoint n × n matrices with determinant 1. The identification
is given by mapping g ∈ SL(n,C) to H = g∗g. This space has a
Riemannian metric preserved by the action of SL(n,C):

∥δH∥2
H = Tr(δH H−1)2.

This metric has (weakly) negative sectional curvature. ( Later
we will see that this fits into a more general story concerning
Riemannian symmetric spaces). The geodesics through the
base point 1 have the form exp(ht) where h is self-adjoint and
trace-free. Clearly the map

exp : TH1 → H

is a diffeomorphism. A standard comparison theorem in
Riemannian geometry states that this map is
distance-increasing. In the case when n = 2 the space H can
be identified with hyperbolic 3-space.
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More generally we can consider any complete, simply
connected, Riemannian manifold X of negative sectional
curvature and the distance-increasing exponential map. We
define an equivalence relation on geodesics in X by γ1 ∼ γ2 if
dX (γ1(t), γ2(t)) is bounded as t → ∞. The set of equivalence
classes is the sphere at infinity S∞(X ). The group Iso(X ) acts
on S∞(X ).
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In the case X = H the sphere at infinity can be identified with
the unit sphere in the vector space of trace-free self adjoint
matrices. For such a matrix M, let

λ1 > λ2 > · · · > λr

be the eigenvalues with eigenspaces P1, . . . ,Pn. Let

Q1 = P1 , Q2 = P1 ⊕ P2 , . . .

Then 0 ⊂ Q1 ⊂ Q2 · · · ⊂ Cn is a flag in Cn. We can recover the
matrix M from the flag and the “weights” λi . So S∞(H) can be
identified with the set of weighted flags. The action of
SL(n,C) ⊂ Iso(H) on S∞ is the obvious action on the weighted
flags.
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A function F on a manifold X as above is called convex if it is
convex on geodesics in the usual sense.
Theorem 3 For X as above, suppose F is a convex function
preserved by a subgroup Γ ⊂ Iso(X ). If F does not have a
minimum in X there is a point in S∞(X ) fixed by Γ.
We show that Theorem 3 implies Theorem 2 (hence Theorem
1). The function F̃ (g) = |g(w0)|2 on SL(n,C) descends to a
function F : H → R. It is preserved by the action of
Γ = Stab(w0) ⊂ SL(n,C) on H. We claim that this function is
convex on geodesics.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



It suffices to consider a geodesic exp(tM) through the base
point 1. Then A = (dρ)(M) is a self-adjoint endomorphism of
W with eigenvalues µj say. Then

|ρ(exp(tM))(w0) =
∑

χ2
j e2µj t

where χj is the norm of the component of w0 in the µj
eigenspace of A. This function is clearly convex. (In fact logF is
convex.)
Now Theorem 2 immediately follows from Theorem 3, since if Γ
preseves a flag it certainly preserves some non-trivial
subspace.
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One proof of Theorem 3 goes via considering the negative
gradient flow of the function F : i.e the integral curves of
ẋ = −gradF (x). Let x1(t), x2(t) be two solutions. The convexity
of F implies that dX (x1(t), x2(t)) is decreasing. One deduces
easily that the flow exists for all positive time and that the
geodesics from x(0) to x(t) have a limit in S∞(X ) which is
independent of the choice of flow line. All the constructions are
invariant under Γ so this limit is fixed by Γ.

In the Geometric Invariant Theory picture the point we have
found in S∞ corresponds to the “optimal destabilising
1-parameter subgroup”.
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There is a variant of the discussion above for real Lie algebras.
Theorem 4
Let g be a simple real Lie algebra. There is a Lie group G with
Lie algebra g, a faithful representation G → SL(V ) and a
Euclidean metric on V such that the image of g in EndV is
preserved by transposition. The intersection K = G ∩ SO(V ) is
a compact subgroup of G and any compact subgroup of G is
conjugate to a subgroup of K . In particular, the subgroup K is a
maximal compact subgroup of G and is unique up to
conjugation.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



The proof of Theorem 4 is the same as for Theorem 1, with
minor changes.

Reference Lie algebra theory without algebra arxiv 0702016
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A Lie algebra g with an involution σ : g → g is called symmetric.
The ±1 eigenspaces of σ give a vector space decomposition
g = k⊕ p where

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k.

We get another Lie algebra structure g′ on the same vector
space by changing the sign of the component p× p → k.
In the situation of Theorem 4, we get such a structure with
σ(ξ) = −ξT . Then k is the Lie algebra of the compact group K .
The subspaces k, p are orthogonal with respect to the Killing
form, which is negative definite on k and positive definite on p.
The Lie algebra g′ is the Lie algebra of a compact group G′.
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The homogeneous spaces G/K ,G′/K are dual symmetric
spaces. The involution σ of the Lie algebras induces one of the
Lie groups. Up to coverings, the quotients G/K ,G′/K can be
realised as submanifolds of the groups: the fixed points of the
maps τ(g) = σ(g)−1.

The sectional curvature of a bi-invariant Riemannian metric on
a Lie group is given by 1

4 |[ξ1, ξ2]|2. This formula works equally
well for a “metric” of indefinite signature. The submanifolds
G/K ⊂ G,G′/K ⊂ G′ are totally geodesic submanifolds
(because τ is an isometry and τ2 is the identity. It follows that
G/K has negative sectional curvature and G′/K has positive
sectional curvature.
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Examples
G = SO(p,q),K = S(O(p)× O(q)),G′ = SO(p + q). The
homogeneous spaces are Grassmann manifolds. (In
particular when q = 1 we get spherical and hyperbolic
geometries.)
G = SL(n,R),K = SO(n),G′ = SU(n). The symmetric
space G/K is the set of Euclidean structures on Rn with
fixed determinant. The dual space G′/K is the set of
“special Lagrangian” subspaces in Cn.
G = Sp(n,R),K = U(n),G′ = Sp(n). G/K is the set of
complex structures on R2n compatible with a fixed
symplectic form. G′/K is the set of n-dimensional complex
Lagrangian subspaces of Hn = C2n.
G is the complexification K c of a compact group K . Then
G′ = K × K and the symmetric spaces are K c/K and K .
When K = SU(n) we get the space H used in the proof of
Theorem 1.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



The symmetric spaces G/K of negative type fit into the
framework of Theorem 3 and we get a result like Theorem 2 for
more general group actions.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Section 3. Some structure theory for compact Lie groups

A compact connected abelian Lie group is a torus.

Theorem 5 Let G be a compact Lie group. Any element of G
lies in some torus subgroup T ⊂ G. Up to conjugation there is
a unique maximal torus.

The dimension of a maximal torus is called the rank of the
group.
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Example
G = SU(n): a maximal torus is the set T of diagonal matrices
in SU(n). The rank is (n − 1).

Observe: “Most” (i.e. outside a set of measure 0) elements of
SU(n) lie in a unique maximal torus. The exceptions are those
with multiple eigenvalues.
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Lemma Let ξ, ξ′ ∈ g. There is a g ∈ G such that [g(ξ), ξ′] = 0.
(Here we are writing g(ξ) for the adjoint action of G on g.)
Proof. Fix an invariant Euclidean form on g. Since G is compact
we can maximise the function g 7→ ⟨g(ξ), ξ′⟩ over g ∈ G.
Without loss of generality, the maximum is achieved at g = 1.
The maximality implies that ⟨[η, ξ], ξ′⟩ = 0 for all η ∈ g. But

⟨[η, ξ], ξ′⟩ = ⟨η, [ξ, ξ′]⟩

and so [ξ, ξ′] = 0.
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If T is a torus then a generic element ξ in LieT generates T in
the sense that T is the closure of the 1 parameter subgroup
exp(tξ).
It is a general fact that any closed subgroup of a Lie group is a
Lie subgroup.
Since the exponential map for G is surjective, any element of G
lies in some torus subgroup.
Suppose T ,T ′ ⊂ G are two maximal tori and choose
generators ξ, ξ′ ∈ g. Apply the Lemma: after replacing T by a
conjugate subgroup we can suppose that [ξ, ξ′] = 0. The fact
that ξ, ξ′ are generators implies that T ,T ′ commute and
maximality implies that T = T ′.
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The Lie algebra t of a maximal torus is called a Cartan
subalgebra of g. It is a real vector space with a Euclidean
structure and an integer lattice Λ ⊂ t defined by T = t/Λ.

The main point of the theory is to understand the Lie group G
via geometry in this Euclidean space t.
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The irreducible complex representations of T are
1-dimensional, corresponding to a dual lattice Λ∗ ⊂ t∗. For
α ∈ Λ∗ the representation takes exp(ξ) to multiplication by
eiα(ξ). (The definition of Λ∗ is that α(ξ) ∈ 2πZ for ξ ∈ Λ. )

α is called the weight of the representation.

Let gC be the complexification g⊗ C. The restriction of the
adjoint action of G makes it a complex representation of T . The
trivial part is just tC = t⊗ C. The non-trivial weights appearing
are called the roots. Thus

gC = tC ⊕
⊕
α

Rα

where α runs over the roots. The fact that the representation is
the complexification of a real representation means that the
roots come in pairs ±α.
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gC is a complex Lie algebra. By construction [tC, tC] = 0 and for
ξ ∈ tC, rα ∈ Rα

[ξ, rα] = iα(ξ)η,

for the complex linear extension of α to tC.
We have a FUNDAMENTAL CALCULATION of the theory: If
rα′ ∈ Rα′ then for ξ ∈ tC:

[ξ, [rα, rα′ ] = [rα′ , [rα, ξ]]− [rα, [rα′ , ξ]]

which is

[rα′ ,−iα(ξ)rα]− [rα,−iα′(ξ)rα′ ] = i(α+ α′)(ξ)[rαrα′ ].

We conclude that
if α ̸= −α′ then either [Rα,Rα′ ] = 0 or α+ α′ is also a root
and [Rα,Rα′ ] ⊂ Rα+α′ ;
[Rα,R−α] ⊂ tC.
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Example G = SU(n).
A Cartan subalgebra is the vector space of diagonal matrices

√
−1 diag(λ1, . . . , λn),

with
∑

λi = 0.
It is the Lie algebra of SL(n,C).
The co-ordinates λi are linear functions on t, hence elements of
t∗. The roots are λi − λj for i ̸= j .

The corresponding root space Rα is the one-dimensional space
of complex matrices with only component in the (ij) position.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Suppose we fix an element ξ0 ∈ t such that α(ξ) ̸= 0 for any
root α. Then we say a root is positive if α(ξ0) > 0 and just one
of α,−α is positive. Then we have a description of g as a vector
space:

g = t⊕
⊕
α>0

Rα

Example G = SU(n)
Let ξ0 be the trace-free part of diag(1,2, . . . ,n). Then if
α = λi − λj we have α(ξ0) = i − j . So α > 0 if i > j . The sum of
the root spaces for positive roots is the space of strictly upper
triangular matrices. A matrix M in su(n) is determined by its
diagonal part and its upper triangular part—the lower triangular
part is fixed by the fact that M = −M∗.
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In the case of G = SU(3) we can make a picture of the 6 roots
as a hexagonal configuration in the plane.

In Section 5 we will discuss the structure of roots etc. further.
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Section 4. Representation Theory: The Borel-Weil Theorem
The main point of this section is to discuss a geometric
description of the unitary representations of a compact Lie
group. This involves an interplay between complex geometry
and symplectic geometry. The result is related to the general
theme of quantisation.
The mathematical setting for classical mechanics is a
symplectic manifold (M, ω).
The mathematical setting for quantum mechanics is a Hilbert
space.
In a problem with a symmetry group G we might expect some
relation between symplectic manifolds with G-action and
unitary representations of G.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Let G be any Lie group. It acts on g∗, the dual of the Lie
algebra, by the co-adjoint action. Let θ be a point in g∗ and
Γ ⊂ G be the stabiliser of θ.
The restriction of θ to Lie(Γ) ⊂ g is a Lie algebra
homomorphism Lie(Γ) → R (Exercise).
We will say that θ is an integral point if this defines a Lie group
homomorphism σ : Γ → S1.
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The Borel-Weil Theorem: Version 1.
If G is compact and connected there is a 1-1 correspondence
between irreducible unitary representations of G and integral
co-adjoint orbits
If θ is an integral point with orbit M ⊂ g∗ we get a complex line
bundle L over M, associated to the principle Γ bundle G → M.
We will see that M can be given a complex structure and L is a
holomorphic line bundle. The representation associated to the
orbit will be the space of holomorphic sections of L.
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Example G = SU(2). We identify g∗ with R3. The non-zero
orbits are spheres. With suitable normalisation, the integral
orbits are the spheres with integer radii. The line bundle over
the sphere of radius k > 0 is O(k) and the holomorphic
sections give the symmetric power sk (C2).
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The co-adjoint orbits have G-invariant symplectic structures.
Let M ⊂ g∗ be the orbit of θ. We have a map

g → TMθ.

Given v1, v2 ∈ TMθ choose lifts ξ1, ξ2 ∈ g and define

ω(v1, v2) = θ([ξ1, ξ2]).

Exercise This is independent of the choice of lifts and defines a
G-invariant symplectic form on M.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Let (N,Ω) be a symplectic manifold with G-action. The
Hamiltionian construction gives a map from C∞(N) to the Lie
algebra of symplectic vector fields. We say the action is
Hamiltonian if there is a lift of the Lie algebra action to a
homomorphism

µ∗ : g → C∞(N)

(with the Poisson bracket on C∞(N)). Equivalently, this is a
G-equivariant moment map

µ : N → g∗.

For the co-adjoint orbits this is just the inclusion map.
If the Hamiltonian action on N is transitive then the image of µ
is a co-adjoint orbit and one sees that µ is a covering map.
So up to possible coverings (which will not occur in our
situation) the co-adjoint orbits are exactly the symplectic
manifolds with transitive Hamiltonian G-action.
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Before continuing our discussion of the Borel-Weil Theorem we
digress to recall the algebraic analyis of unitary representations
of SU(2).
Fix the standard circle subgroup S1 ⊂ S2 with generator iH
where

H =

(
1 0
0 −1

)
.

Let

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
.

So H,X ,Y is a basis for the complexified Lie algebra sl(2,C)
and

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = 2H. (∗ ∗ ∗∗)
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Let V be a representation of SU(2). This decomposes under
the action of S1 into a sum of weight spaces V =

⊕
Vθ for

θ ∈ Z. Let k be the “highest weight” (the largest weight with
Vθ ̸= 0).
By definition we have Hv = θv for v ∈ Vθ. The brackets (****)
imply that

HXv = (θ + 2)Xv HYv = (θ − 2)Yv

So
X : Vθ → Vθ+2 ,Y : Vθ → Vθ−2.

From this one sees easily that if V is irreducible the space Vk is
one dimensional and if v is a non-zero element then a basis of
V is given by v,Yv,Y 2v, . . . ,Y kv. The relations (****)
completely define the representation in this basis and
V = Sk (C2).
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We return to the Borel-Weil Theorem, so G will be a compact
connected Lie group. We want to define two constructions:
Irreducible representation → co-adjoint orbit.
co-adjoint orbit → irreducible representation.

Preliminary fact. A co-adjoint orbit of G is simply connected.
Any class in π1(G) is represented by a geodesic loop at the
identity; i.e. a 1-parameter subgroup S1 ⊂ G. Thus if T is a
maximal torus the map π1(T ) → π1(G) is surjective. For a
co-adjoint orbit M = G/Γ we have T ⊂ Γ so π1(Γ) → π1(G) is
surjective and π1(M) is trivial.
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Preliminary Observation
Suppose (X , ω) is a compact Kahler manifold and v is a vector
field on X defining a 1-parameter family ft : X → X of
holomorphic isometries. Then:

The family ft extends to t ∈ C,
If H is the Hamiltonian for v then Iv = grad H and fit is the
gradient flow of H.
The critical points of H are the fixed points of ft and the
Hessian of H at a critical point p generates the action of ft
on TXp. Thus the eigenspaces of the Hessian are complex
subspaces of TXp.
|v |2 = ∇Iv H.
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Fix an invariant Euclidean norm on g and identify g with its dual.
Lemma Let X be a compact Kahler manifold with a Hamilonian
G-action which preserves the complex structure. Let p ∈ X be
a point where µ|2 is maximal. Then the G-orbit of p is a
complex submanifold of X .
The complexified group Gc acts holomorphically on X . It
suffices to show that the Gc orbit of p is the same as the
G-orbit. Let Γ ⊂ G be the stabiliser of p and ξ = µ(p) ∈ g.
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Let U be the orthogonal complement of Lie(Γ) in g. The
derivative of the action gives a linear map from U to TXp. This
defines a complex linear map ρ : U ⊗ C → TXp. The map adξ
induces a complex linear map from U ⊗ C to itself. Write

U ⊗ C = U0 ⊕ U+ ⊕ U−

where adξ is zero on U0 and U± is the span of the ±
eigenspaces of iadξ. The spaces U± are complex conjugate.
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We claim that
ρ vanishes on U−;
U0 = 0.

Let v ′ be the vector field on X defined by iξ under the
complexified action. It is the gradient vector field of the
Hamiltonian H = ⟨µ, ξ⟩.
Let η ∈ U− be an eigenvector for iadξ, so i[ξ, η] = λη for λ < 0.
Under the complexified action, η defines a holomorphic vector
field N on X and [v ′,N] = λN.
For the first item, we want to show that N vanishes at p.
We have the formula [v ′,N] = ∇v ′N −∇Nv ′. Since v ′ vanishes
at p we have ∇Nv ′ = −λN at the point p.
Since v ′ = grad H, the quantity ∇Nv ′ is the Hessian of H at the
critical point p, evaluated in the direction N.
The point p is a maximum point for H, so the Hessian is
negative and this implies that N(p) = 0.
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For the second item, suppose η ∈ g is a real element of W0, so
[ξ, η] = 0. Let Z be the vector field on X defined by iη. We want
to show that Z vanishes at p. (Because then η ∈ Lie(Γ) so
η = 0.)
We have [v ′,Z ] = 0 so, as in the first item, ∇Z v ′ = 0 at the
point p and Z (p) lies in the null-space of the Hessian of H.
Let F = ⟨µ, η⟩ be the Hamiltonian generating −IZ . Then
∇Z F = |Z |2.
Suppose that Z (p) ̸= 0. Then ∇Z F does not vanish at p. Since
Z lies in the null-space of the Hessian of H, this implies that the
second derivative of |µ|2 in the direction Z is positive, which
contradicts the fact that |µ|2 is maximised at p.
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Let V be a unitary representation of G and consider the action
on X = P(V ∗) with its standard symplectic structure ωFS
This action is Hamiltonian. It suffices to consider the action of
U(V ) on P(V ). The moment map is given by

µ(z) =
i

|z|2
zz∗.

By the Lemma, there is an orbit M ⊂ P(V ∗) which is a complex
submanifold. Then ωFS defines a symplectic structure on M
and the moment map is the restriction of µP. Since the action is
transitive the moment map identifies M with a co-adjoint orbit. It
is an integral orbit with the action on the fibre of O(1) over p
defining a homomorphism Γ → S1.
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Now we want to see how to go from an integral co-adjoint orbit
to a representation.
Choose a maximal torus T ⊂ G. Any co-adjoint orbit M can be
represented by a point ξ in t = t∗. For exposition, suppose first
that ξ is “generic”, not orthogonal to any root and so defines a
set of positive roots. Write

g⊗ C = t⊗ C ⊕ W+ ⊕ W−

where W± are spanned by the ± root spaces.
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In this case the stabiliser Γ is the torus T . The tangent space of
M at the base point ξ is identified with the real part of
W+ ⊕ W− which we can identify with W+. So we get an
almost-complex structure on M. The subspace t⊗ C ⊕ W+ is a
Lie subalgebra of g⊗ C. It defines a complex subgroup B ⊂ Gc .
Since G ⊂ Gc and T ⊂ B we have a map G/T → Gc/B and
looking at the Lie algebras we see that this is an equivalence.
So the co-adjoint orbit M has a complex description as Gc/B
and this makes it clear that the almost-complex structure is
integrable.
Similarly we have a homomorphism B → C∗ from which one
see that the line bundle L → M is a holomorphic line bundle.
Thus we get a representation of G on the vector space
H0(M,L).
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For G = SU(n) we get the flag manifolds discussed before. The
generic case above is when all eigenvalues are distinct and
G/T is the space of maximal flags

0 ⊂ E1 ⊂ . . .Er · · · ⊂ En−1 ⊂ Cn

with dimEi = i . The subgroup B is the group of upper triangular
matrices, preserving the standard flag.
The co-adjoint orbits of SU(n) are flag manifolds and have a
complex description SL(n,C)/P where P is a group of block
upper triangular matrices.
The same picture applies for general G. The coadjoint orbit
G/Γ has a complex description Gc/P where the Lie algebra of
P includes the elements of W− corresponding to roots α with
α(ξ) = 0.
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Borel-Weil Theorem; Version 2
These two constructions are inverse (when the first
construction is restricted to irreducible representations V).

The proof involves checking various things.

The main point is to show that the space H0(M,L) is non-trivial.
In fact contains a particular “highest weight vector”.
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Suppose (X , ω) is a symplectic manifold and L → X is a
Hermitian line bundle with connection and curvature −iω.

We claim that the Lie algebra C∞(X ) acts on the line bundle.
Let f be a function on X defining a vector field v . Define an
operator on sections of L:

Df (s) = ∇v s − ifs.

Then if g is another function you find that [Df ,Dg] = {f ,g}.
Thus a moment map for the action of a group G on (M, ω)
defines a lift of the action to L.

Consider the case G = S1 with Hamiltonian H. The fixed points
of the action are the critical points of H. The value H(p) at a
critical point p is the weight of the action on the fibre Lp.
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Now suppose that (X , ω) is a compact Kahler manifold, the line
bundle L → X is a holomorphic line bundle and S1 acts
non-trivially on X and L. The space of sections H0(L) is a
representation of S1 and so decomposes into a sum of weight
spaces.
Proposition If H is a Morse function and the image of
H : X → R is the interval [a,b] then:

The weights lie in [a,b].
a and b are weights and the corresponding weight space
are 1-dimensional.

We can apply this Proposition to 1-parameter subgroups in G to
show that our representations H0(M,L) are non-trivial.
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Without loss of generality, b = 0. The indices of all critical
points are even, so by elementary Morse Theory there is a
unique maximum p ∈ X . The circle acts trivially on the fibre Lp.
Choose a basis element e ∈ Lp. We want to find an
S1-invariant holomorphic section s with s(p) = e.
Let ft : X → X be the increasing gradient flow of H. This is the
same as the complexified action restricted to R+ ⊂ C∗. For any
point x ∈ X the flow ft(x) converges to a critical point of H as
t → ∞. For generic x this limit is p. In fact there is a complex
analytic subvariety X ⊂ Z such that this is true for x ∈ X \ Z .
Consider the lifted action to the total space of L. This gives f̃t
covering ft . For x ∈ X \ Z we define s(x) ∈ Lx to be the unique
point such that limt→∞ f̃t(s(x)) = e.
This defines a holomorphic section s of L over X \ Z .
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To see that s extends holomorphically over Z let P be the
standard compactification of the total space of L:

P = P(L ⊕ C).

We have a zero section X0 ⊂ P and an infinity section X∞ ⊂ P.
The section s defines a complex submanifold Σ of P which is
not closed. We claim that the closure Σ does not intersect X∞.
This implies that |s| is bounded on X \ Z which means that s
extends holomorphically over Z by a standard extension
theorem in complex analysis.
In fact the Σ \ Σ lies in the X0 so the extended holomorphic
section vanishes on Z .
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By general Morse Theory, any point σ in Σ can be joined to e by
a “chain” of flow lines of f̃t . For example limt→∞ f̃t(σ) = q where
q is a fixed point of the action on P and there is a doubly infinite
flow line ft(σ′) with

limt→−∞ f̃t(σ′) = q limt→∞ f̃t(σ′) = e.

Apart from the fibre over p, the fixed points on P are the points
in X0,X∞ lying over the other critical points p′ of H. Since
H(p′) < 0 the point at infinity is an attractive point for flow f̃t as
t → ∞ on the fibre over p′. Simple considerations then show
that Σ \ Σ lies in X0.
Suppose s′ is another invariant section. Then s′/s is an
invariant holomorphic function in a neighbourhood of p.
Looking at the Taylor series you see that this is a constant, so
the weight space is 1-dimensional.
Similarly, looking at the Taylor series around p, you see that
there is no section with weight strictly greater than 0.
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Example
For G = SU(3) = SU(V ) the generic co-adjoint orbit is the flag
manifold

F = {(x , ξ) ∈ P × P∗ : ξ.x = 0},

where P = P(V ) is the projective plane and P∗ is the dual
plane. Write O(p,q) for the line bundle

π∗
1(O(p))⊗ π∗

2(O(q))

over F. The irreducible representations Vp,q of SU(3) are the
sections of O(p,q) for p,q ≥ 0. When one of p,q vanishes they
can also be described as sections over P or P∗, which are the
smaller co-adjoint orbits. Explicitly, Vp,q is the quotient of
sp,q = sp(V ∗)⊗ sq(V ) by the image of the natural map
sp−1,q−1 → sp,q. Alternatively, this can be identified with the
kernel of a natural map sp,q → sp−1,q−1.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Section 5: More on structure theory and representations

Proposition The only compact connected Lie groups of rank 1
are S1,SU(2),SO(3).
To see this we easily reduce to the case when the Lie algebra
has trivial centre. Then the non-zero coadjoint orbits have
codimension 1 and so are spheres in the Lie algebra. The only
sphere which carries a symplectic structure is S2 so the group
has dimension 3 and then the argument is straightforward.
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Go back to our compact connected Lie group G with maximal
torus T and decomposition

g⊗ C = t⊗ C ⊕
⊕

Rα

Proposition
If α is a root then:

the only multiple kα which is a root, for non-zero k , is
k = ±1.
the root space Rα is one dimensional and Rα+ ℜ(Rα) is a
Lie algebra isomorphic to su(2). (equivalently
Cα+ Rα + R−α is a copy of sl(2,C).)
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Suppose rα ∈ Rα and r−α ∈ R−α. If η ∈ t is orthogonal to α then

⟨η, [rα, r−α]⟩ = −⟨[rα, η], r−α⟩ = 0

since
[η, rα] = ⟨η, α⟩rα

by the definition of the root space. Thus [rαr−α] is a multiple of
α. This implies that

Cα⊕
⊕

k

Rkα

is a Lie algebra of rank 1. Then the Proposition follows from the
previous result.
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Recall that the normaliser N(T ) of T is the set of g ∈ G such
that gTg−1 = T . It is a subgroup and T ⊂ N(T ) is a normal
subgroup.
The Weyl group W is the quotient N(T )/T . It is a finite group
and it acts on T and its Lie algebra t. It also acts on the finite
set of roots in t.

Example G = SU(n) or U(n). With our standard maximal torus
of diagonal matrices, the Weyl group is the permutation group
of order n!. It acts on the roots λi − λj .
In particular, for G = SU(2) the Weyl group has order 2 and
acts on t = R as multiplication by ±1.
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Let V be an irreducible unitary representation of G. Restriction
gives a representation of T which decomposes

V =
⊕

Vµ

where the weights µ lie in the weight lattice Λ∗ ⊂ t. The
multiplicity of a weight µ is dimVµ

(Recall that we are identifying t with its dual.)

From the definitions, the weights and multiplicities are
preserved by the action of W on t.
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Each weight has a norm. Let µ0 be a weight of maximal norm.
Proposition
The weights of V lie in the intersection of Λ∗ with the convex
hull of the W-orbit of µ0.
Algebraic approach
For each root α fix a basis element rα ∈ Rα. In the
representation on V this maps to an element of End V . For
η ∈ t and vµ ∈ Vµ we have

η(rαvµ) = [η, rα]vµ + rαη(vµ).

Using the definitions of the root and weight spaces this is

⟨η, α⟩rα(vµ) + ⟨η, µ⟩rαvµ = ⟨η, α+ µ⟩rαvµ.

So rα is either 0 on Vµ or maps Vµ to another weight space
Vµ+α.
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Assume for simplicity that µ0 is not orthogonal to any root. So it
defines a set of positive roots. For each positive root α let
Xα : V → V be the action of rα and Yα : V → V be that of r−α.
By the norm-maximising condition, for any positive root α the
sum α+ µ0 is not a weight. So Xα vanishes on Vµ0 . Fix a basis
element v ∈ Vµ0 .

As in the case of sl(2,C), the action of the products of the Yα

on v generates a g- invariant subspace of V which must be all
of V .

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Let C∗ ⊂ t be the convex cone generated by the positive roots:

C∗ = {
∑

tαrα : tα ≥ 0}.

It follows from the discussion above that the weights all lie in

vµ0 − C∗.

But the set of weights is preserved by the Weyl group, so lies in⋂
w∈W

w(vµ0)− C∗). (∗ ∗ ∗∗)
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In general, let K be the convex hull of a finite set P of points in
Rn. For each p ∈ P there is a tangent cone TKp of K at p. This
is a convex cone such that a neighbourhood of p in K is the
same as a neighbourhood in p − TKp. One can show that

K =
⋂
p∈P

p − TKp.

In the case at hand, the discussion below of reflections and
simple roots shows that

C∗ ⊂ TKµ0 .

Then (****) implies that the set of weights is contained in the
convex hull K .
(In fact the set of weights is exactly the intersection of the
weight lattice with the convex hull.)
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Symplectic geometry approach
Suppose an m-dimensional torus T acts on a compact
symplectic manifold X with moment map µ : X → Rm. Let
F ⊂ X be the set of points fixed by T . By the definition of the
moment map, it is constant on each connected component of F
so µ(F ) is a finite set in Rm.
Theorem (Atiyah, Guillemin, Sternberg) The image µ(X ) is the
convex hull of µ(F ).
Now suppose that X is Kahler and there is a holomorphic line
bundle L → X as we considered before. So the vector space
H0(X ,L) is a representation of T and decomposes as a sum of
weight spaces Hµ for µ ∈ Zm ⊂ Rm.
Theorem The weights lie in the convex set µ(T ) and each point
in µ(F ) is a weight.
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These results can be proved without too much difficulty by
reducing to the case m = 1 we studied before.
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We can apply these results to a co-adjoint orbit M ⊂ g and the
restriction of the G action to T ⊂ G. The moment map
µ : M → t is the restriction of orthogonal projection t ⊂ g. We
have
Proposition

The fixed points F ⊂ M are the intersection M ∩ t;
The fixed points form one orbit of the action of W on t.

Given this and the two Theorems above, the statement about
weights of an irreducible representation of G follows from the
Borel-Weil Theorem.
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Example

G = SU(n) and M is the orbit of diag(λi) for λi distinct. This can
be identified with direct sum decompositions into 1-dimensional
subspaces

Cn = P1 ⊕ P2 ⊕ Pn.

The standard torus fixes such a decomposition if and only if the
Pi are a permutation of the standard co-ordinate axes in Cn.
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The orthogonal complement of any root α is a “root plane” the
hyperplane α⊥ ⊂ t. A Weyl chamber is the closure in t of a
connected components of the complement of all these
hyperplanes. Any Weyl chamber is defined by a set of
inequalities

{η ∈ t : ⟨η, α⟩ ≥ 0, α ∈ S}

for some subset S of roots. Thus the Weyl chambers are
convex cones.
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Proposition For each root α the reflection in the hyperplane α⊥

is in the Weyl group.

The proof goes by reducing to the case of SU(2) using the
copy of su(2) associated to each root.

Example Take G = SU(n) and the root λ1 − λ2. In the
permutation group on n elements the reflection corresponds to
a transposition (12). This is realised in the copy of
SU(2) ⊂ SU(n) acting on the first two co-ordinates.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Proposition
The Weyl group acts simply transitively on the set of Weyl
chambers. Each orbit in t of the Weyl group meets each Weyl
chamber exactly once
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Fix one Weyl chamber C and call it the fundamental Weyl
chamber(FWC) . So we have equivalences between:

integral co-adjoint orbits in g;
orbits of the Weyl group acting on the lattice of weights in t;
lattice points in the fundamental Weyl chamber.

The main fact in the representation theory is that any one of
these sets is equivalent to the set of isomorphism classes of
irreducible representations.
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The lattice point corresponding to a co-adjoint orbit is the
“highest weight”. It is characterised by any of

It maximises the norm over all weights of the
representation in the FWC;
It is maximal in the partial order induced by inclusion of
convex hulls of W-orbits;
Fix any η ∈ t with Lη(ξ) = ⟨η, ξ⟩ ≥ 0 for all ξ ∈ C. Then the
highest weight maximises the linear functional L over all
the weights.

The choice of fundamental Weyl chamber gives a choice of a
set of positive roots. A root α is positive if Lα ≥ 0 on C.
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To sum up:

Theorem For each lattice point µ0 ∈ C ⊂ t there is a unique
irreducible representation with highest weight µ0 and these are
all the irreducible representations of G.

For each point η in the interior of the Weyl chamber C the
co-adjoint orbit can be identified with G/T , with the same
complex structure. Suppose that g has trivial centre. Then
H2(G/T ;R) = t and H2(G/T ;Z) can be identified with the
weight lattice in t. For each point λ in the weight lattice we get a
holomorphic line bundle Lλ over G/T . This is a positive line
bundle when λ lies in the interior of C.
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The Borel-Weil Theorem: Version 3 The holomorphic
sections of Lµ → G/T define the irreducible representation of G
with highest weight µ ∈ C.
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The simple roots are the roots defining the walls of the
fundamental Weyl chamber.

Any positive root is a sum of simple roots with positive
coefficients;
If g has trivial centre, the number of simple roots is the rank
of G, i.e. the dimension of t. The Weyl chamber is
affine-equivalent to a cone over a simplex.
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For SU(n) or U(n) we can take as FWC the set defined by

λ1 ≤ λ2 ≤ λn

The positive roots are λi − λj for i < j .There are (n − 1) simple
roots

λ2 − λ1, λ3 − λ2, λn − λn−2.

For SO(2n) we take the maximal torus of block-diagonal
matrices with blocks (

cosλi − sinλi
sinλi cosλi

)
.

So we have co-ordinates λ1, . . . λn. The Weyl group is
generated by permutations of the λi and change of sign of an
evennumber of the λi . A FWC is the set defined by

−λ2 ≤ λ1 ≤ λ2 · · · ≤ λn.

The roots are ±λi ± λj for i ̸= j . The simple roots are

λ1 + λ2, λ2 − λ1, λ3 − λ2, . . . λn − λn−1
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For SO(2n + 1) we can take the same maximal torus, adding
an entry 1 on the diagonal. The Weyl group is generated by
permutations and all changes of sign. The roots are ±λi ± λj
and ±λi . A fundamental chamber is defined by

0 ≤ λ1 ≤ λ2 · · · ≤ λn.

The simple roots are

λ1, λ2 − λ1, λ3 − λ2, . . . .
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Co-adjoint orbits for the orthogonal groups
Let ξ be the matrix in the maximal torus of SO(m) with one
non-trivial block. The co-adjoint orbit of ξ is the Grassmannian
Gr2(Rm) or oriented 2-planes in Rm. Let v1, v2 be an oriented
orthonormal basis for a 2-plane and set Z = v1 + iv2 ∈ Cm.
Then

∑
Z 2

i = 0 and Z defines a point in the standard quadric
Q ⊂ CPm−1. This exhibits the co-adjoint orbit as a complex
manifold.
In general, a co-adjoint orbit of SO(m) can be identified with a
set of “symmetric flags”

E0 ⊂ E1 ⊂ E2 ⊂ Er ⊂ Cm

where Ei is the annihilliator of Er−i with respect to the standard
quadratic form on Cm. The case above is when r = 1 and
dim E0 = 1. Then the condition is just that the form vanishes on
E0.
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Consider the case of SO(5). We have simple roots λ1, λ1 − λ2
as above. The coadjoint orbit corresponding to an interior point
of the chamber is the set of pairs (L,p) where L is a line in the
quadric Q ⊂ CP4 and p is a point in L. On one edge of the
chamber the orbit becomes just Q and on the other the lines in
Q.
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Constraints on roots
Let Π ⊂ t be a plane containing at least two independent roots.
Then Π⊗ C ⊕

⊕
α∈Π Rα is a Lie subalgebra of rank 2. There

are just four possibilities.
Case 0 The roots in Π are ±α,±β with α, β orthogonal.
Case 1 There are 6 roots in Π, they all have the same length
and going around the unit circle make successive angles π/3.
Case 2 There are 8 roots in Π, going around the unit circle they
make successive angles π/4 and the lengths are alternately
L,

√
2L for some L.

Case 3 There are 12 roots in Π, going around the unit circle
they make successive angles π/6 and the lengths are
alternately L,

√
3L for some L.
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The proof uses the fact that the reflections in the roots
preserves the lattice spanned by the roots.
This classification is closely related to the discussion of elliptic
curves with “complex multiplication”.

Case 0 occurs for G = SO(4) or G = SU(2)× SU(2).
Case 1 occurs for G = SU(3).
Case 2 occurs for G = SO(5).
Case 3 occurs for the exceptional Lie group G2 that we
discuss in the next Section.
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The Dynkin diagram is formed by taking one node for each
simple root and joining nodes by k bonds according to cases
k = 0,1,2,3. We also record which roots are “long” and “short”
Example
The simple roots for SU(n) can be taken as

λ2 − λ1, λ3 − λ2, . . . , λn − λn−1.

They all have length
√

2. If n > 3 the first and last are
orthogonal and the angle between successive roots in the list is
2π/3. Changing one sign we get roots with angle π/3.
The Dynkin diagram is a chain of n − 1 nodes joined by 1 bond.
This also holds for n = 2,3.
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Example
The simple roots for SO(2n + 1) can be taken as

λ1, λ1 − λ2 . . . , λn − λn−1.

The first is shorter than the others. The diagram is a chain of n
nodes, the first two joined by 2 bonds and the rest by 1.

The diagram for Sp(n) is the same as for SO(2n + 1), except
that the first root is long and the rest are short.
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The Weyl character formula
Let ρ : G → U(V ) be a representation of our compact Lie group
G. The character is the function on G:

χV (g) = Trρ(g).

It is a “class function”, preserved by conjugation in G.
Fix a maximal torus. Since any element of G is conjugate to
one in T the character is determined by its restriction to T . This
is invariant under the action of the Weyl group W .
We have a decomposition into weight spaces V =

⊕
λ Vλ with

multiplicities mλ = dim Vλ. Think of a function on T as a
periodic function on t and write eλ for the function

eλ(θ) = ei⟨θ,λ⟩.

Then the restricted character is
∑

λ mλeλ.
(It is the Fourier transform of the collection of multiplicities,
regarded as a measure on t).
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Example G = SU(2), ρ the irreducible representation of
dimension k + 1. The weights are −k ,−k + 2, . . . , k − 2, k all
with multiplicity 1 and the character is

χ(θ) = e−ikθ + e−i(k−2)θ + · · ·+ eikθ
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Fix a positive Weyl chamber C, so the irreducible
representations are parametrised by lattice points in C.
Write

D(θ) =
∏
α>0

eα(θ/2)− e−α(θ/2) =
∏
α>0

eiα.θ/2 − e−iα.θ/2

which is ∏
α>0

2i sin(α.θ/2).

(Here the product is over the positive roots.)

This is a periodic function on t; it is not invariant under the Weyl
group W but alternating. Applying reflection in a root changes
the sign of D.
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For w ∈ W write (−1)w ∈ {±1} for the determinant of the
action of w on t. For any weight λ define the alternating sum:

Aλ =
∑

w∈W

(−1)wew(λ).

Then one shows that D = Aρ where ρ = 1
2
∑

α>0 α.
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The Weyl character formula
For the representation V with highest weight λ ∈ C the
restriction of the character to T is

χλ =
Aλ+ρ

Aρ
.

For example in the case of SU(2)

ei(k+1)θ − e−i(k+1)θ

eiθ − e−iθ = eikθ + ei(k−2)θ + · · ·+ e−ikθ.

We outline two proofs of the character formula.
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Weyl’s proof
This uses general facts about representations of compact
groups.

Let G be a compact group with bi-invariant measure,
normalised to Vol(G) = 1. G acts by left and right translation on
L2(G).
Let V be a finite dimensional unitary representation of G. Then
G acts on the left and right on End V = V ⊗ V ∗. The basic fact
is that

L2(G) =
⊕

V

End V ,

where the sum runs over isomorphism classes of irreducible
representations.
This implies that the characters χV form an orthonormal basis
for the class functions.
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Weyl’s integration formula
For a class function f on G;∫

G
|f |2 = |W |−1

∫
T
|f |2|D|2.

This can be seen as a special case of a formula in Riemannian
geometry for the volume element in exponential coordinates.
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Now for a weight λ ∈ C write χ̃λ =
Aλ+ρ

Aρ
, so we want to prove

that χλ = χ̃λ. Since
|D|2 = AρAρ,

we have ∫
G
|χ̃λ|2 = |W |−1

∫
T

AρAρ = 1.

This uses the usual orthonormal property of the functions eµ on
T and the fact that λ+ ρ is in the interior of C, so the W orbit
contains |W | points.

Similarly χ̃λ, χ̃µ are orthogonal if λ ̸= µ.
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Define a partial order on the weights by µ ≤ µ′ if the W -orbit of
µ is contained in that of µ′. Then

the χ̃µ and χµ are both orthonormal systems;
they are W -invariant and have the same highest order
term.

It follows by an induction argument that χλ = χ̃λ for all λ.
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Atiyah and Bott proof.
For simplicity consider the case when λ is in the interior of the
chamber C, so the co-adjoint orbit is X = G/T . Each θ ∈ t
defines a holomorphic diffeomorphism fθ : X → X and for
generic θ there are |W | fixed points corresponding to the
W -orbit of λ in t.
As a digression, consider first the topological Lefschetz number
L(fθ) of fθ. Since fθ is homotopic to the identity this is the Euler
characteristic of X . The Lefschetz fixed point formula gives

L(fθ) =
∑

p

signdet (1 − dfθ),

where the sum runs over the fixed points p and

dfθ : TXp → TXp.

Since dfθ is complex linear the signs are all positive and we
conclude that e(X ) = |W |.
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This argument can be promoted to a Morse Theory argument
which shows that all the homology of X lies in even dimensions,
so the sum of the Betti numbers is |W |.

Example If G = SU(3) the flag manifold SU(3)/T 2 has

b0 = b6 = 1 b2 = b4 = 2.
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Atiyah and Bott established a general holomorphic Lefschetz
formula. Let Z be a compact complex manifold and E → Z a
holomorphic vector bundle. Let f : Z → Z be a holomorphic
diffeomorphism with isolated transverse fixed points. Let
ϕ : E → f ∗(E) be lift to E . Then f , ϕ act on the sheaf
cohomology H∗(Z ,O(E)) giving a holomorphic Lefschetz
number LO(f , ϕ). The fixed point formula is

LO(f , ϕ) =
∑

p

Tr ϕp

det(1 − dfp)
.

Simon Donaldson Lie Groups and Geometry, Sections 1-5



Apply this to fθ : X → X and the line bundle L → X defined by
the weight λ. It can be shown that the higher cohomology
vanishes so the Lefschetz number gives the character of the
representation on holomorphic sections of L. But note that a left
action of G on X induces a right action on sections of L so we
get

L(f−θ) = χ(exp(θ)).
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Consider the contribution from the fixed point p0 corresponding
to λ ∈ C. At this point TX is identified with the direct sum of the
positive root spaces and, with f = f−θ,

det(1 − df ) =
∏
α>0

(1 − e−iα.θ).

This is equal to

e−iρ.θ
∏
α>0

(eiα.θ/2 − e−iα.θ/2) = e−ρ(θ)D(θ) = e−ρ(θ)Aρ(θ)

The trace of ϕp0 is just eλ(θ).
So the contribution from p0 to the fixed point formula is the
same as the contribution from λ+ ρ in the sum Aλ+ρ/Aρ.
A little thought shows that the same is true for the other fixed
points.
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Remark
Let f : C → C be the map f (z) = az. Then f acts on the
polynomial functions on C, f ∗(zp) = apzp. So there is a formal
trace of the action on all polynomials

Trf ∗ = 1 + a + a2 + · · · = (1 − a)−1 = det(1 − df )−1.
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